We defend the Fock-space Hamiltonian truncation method, which allows to calculate numerically the spectrum of strongly coupled quantum field theories, by putting them in a finite volume and imposing a UV cutoff. The accuracy of the method is improved via an analytic renormalization procedure inspired by the usual effective field theory. As an application, we study the two-dimensional φ 4 theory for a wide range of couplings. The theory exhibits a quantum phase transition between the symmetry-preserving and symmetry-breaking phases. We extract quantitative predictions for the spectrum and the critical coupling and make contact with previous results from the literature. Future directions to further improve the accuracy of the method and enlarge its scope of applications are outlined.
The Fock-space Hamiltonian truncation method is developed further, paying particular attention to the treatment of the scalar field zero mode. This is applied to the two-dimensional φ 4 theory in the phase where the Z 2 -symmetry is spontaneously broken, complementing our earlier study of the Z 2 -invariant phase and of the critical point. We also check numerically the weak/strong duality of this theory discussed long ago by Chang.
Hamiltonian Truncation (a.k.a. Truncated Spectrum Approach) is a numerical technique for solving strongly coupled QFTs, in which the full Hilbert space is truncated to a finitedimensional low-energy subspace. The accuracy of the method is limited only by the available computational resources. The renormalization program improves the accuracy by carefully integrating out the high-energy states, instead of truncating them away. In this paper we develop the most accurate ever variant of Hamiltonian Truncation, which implements renormalization at the cubic order in the interaction strength. The novel idea is to interpret the renormalization procedure as a result of integrating out exactly a certain class of high-energy "tail states". We demonstrate the power of the method with high-accuracy computations in the strongly coupled two-dimensional quartic scalar theory, and benchmark it against other existing approaches. Our work will also be useful for the future goal of extending Hamiltonian Truncation to higher spacetime dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.