Various conditions, including traffic accidents, sports injuries, and neurological disorders, can impair human wrist movements, underscoring the importance of effective rehabilitation methods. Robotic devices play a crucial role in this regard, particularly in wrist rehabilitation, given the complexity of the human wrist joint, which encompasses three degrees of freedom: flexion/extension, pronation/supination, and radial/ulnar deviation. This paper provides a comprehensive review of wrist rehabilitation devices, employing a methodological approach based on primary articles sourced from PubMed, ScienceDirect, Scopus, and IEEE, using the keywords “wrist rehabilitation robot” from 2007 onwards. The findings highlight a diverse array of wrist rehabilitation devices, systematically organized in a tabular format for enhanced comprehension. Serving as a valuable resource for researchers, this paper enables comparative analyses of robotic wrist rehabilitation devices across various attributes, offering insights into future advancements. Particularly noteworthy is the integration of serious games with simplified wrist rehabilitation devices, signaling a promising avenue for enhancing rehabilitation outcomes. These insights lay the groundwork for the development of new robotic wrist rehabilitation devices or to make improvements to existing prototypes incorporating a forward-looking approach to improve rehabilitation outcomes.