2004
DOI: 10.1007/1-4020-2547-5
|View full text |Cite
|
Sign up to set email alerts
|

Handbook of Number Theory II

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
166
0
1

Year Published

2008
2008
2024
2024

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 190 publications
(168 citation statements)
references
References 0 publications
1
166
0
1
Order By: Relevance
“…Let be a prime number, observe that α ∈ B =⇒ α ≤ 2 (11) Indeed, by the equality √ ≤ ( ) which holds for > 6, cf. [21], we get that if ∈ B, then √ ≤ ( ) ≤ , thus ≤ 2 . We verify that for α = ≤ 6 the implication (11) also holds.…”
Section: Continuous and Smooth Categories: J[ ] Equal To Onementioning
confidence: 91%
“…Let be a prime number, observe that α ∈ B =⇒ α ≤ 2 (11) Indeed, by the equality √ ≤ ( ) which holds for > 6, cf. [21], we get that if ∈ B, then √ ≤ ( ) ≤ , thus ≤ 2 . We verify that for α = ≤ 6 the implication (11) also holds.…”
Section: Continuous and Smooth Categories: J[ ] Equal To Onementioning
confidence: 91%
“…But, the number of divisors of n is greater than the number of unitary divisors of n, so Sitaramachandrarao and Surynarayana pointed out in [8] the following estimate of s*(n):…”
Section: Conducting Simple Calculations and Accounting Formentioning
confidence: 99%
“…Число гольдбаховых пар таково, что существует постоян-ная c 1 , для которой R(q) < c 1 · ψ(q)/q (см. работы [13] или [14]). Применяя метод, использованный в работе [3] при вычислении чисел-чемпионов для ψ(q)/q, получим, что c 1 ≡ ζ(2).…”
Section: о гольдбаховых парах в примориальных размерностях и гипотезеunclassified