2017
DOI: 10.1093/jigpal/jzx042
|View full text |Cite
|
Sign up to set email alerts
|

Handwritten digit recognition using neural networks and dynamic zoning with stroke-based descriptors

Abstract: This article presents an Off-line handwritten digit recognition approach based on neural networks. We define a numeric character as a composition of vertical and horizontal strokes. After the preprocessing, we use dynamic zoning to retrieve the positions where vertical strokes – the main strokes — are joined to horizontal strokes. These features are recorded into a representative string and verified using a custom matching pattern. Finally, a multilayer perceptron neural network is fed with the previous data t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 31 publications
0
0
0
Order By: Relevance