This article presents an Off-line handwritten digit recognition approach based on neural networks. We define a numeric character as a composition of vertical and horizontal strokes. After the preprocessing, we use dynamic zoning to retrieve the positions where vertical strokes – the main strokes — are joined to horizontal strokes. These features are recorded into a representative string and verified using a custom matching pattern. Finally, a multilayer perceptron neural network is fed with the previous data to raise the learning process. The results gathered from the experiments performed on the well-known MNIST handwritten database are compared against other proposals providing promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.