2010
DOI: 10.6109/jkiice.2010.14.12.2761
|View full text |Cite
|
Sign up to set email alerts
|

Handwritten Numeral Recognition using Composite Features and SVM classifier

Abstract: In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by projection runlength, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where concavity feature functions as complement to the directional features. During class… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0
1

Year Published

2012
2012
2016
2016

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 9 publications
0
0
0
1
Order By: Relevance
“…최근에는 Vapnik [8]에 의해 개발된 통계적 학습이론을 기반으로 하는 SVM (Support Vector Machine)을 필기체 숫 자인식 뿐만 아니라 유도전동기의 고장진단에 이용하는 연 구결과들이 발표된 바 있다 [9][10][11][12].…”
unclassified
“…최근에는 Vapnik [8]에 의해 개발된 통계적 학습이론을 기반으로 하는 SVM (Support Vector Machine)을 필기체 숫 자인식 뿐만 아니라 유도전동기의 고장진단에 이용하는 연 구결과들이 발표된 바 있다 [9][10][11][12].…”
unclassified