Harmonic pollution of double fed induction generators (DFIGs) has become a vital concern for its undesirable effects on power quality issues of wind generation systems and grid-connected system, and the double pulse width modulation (PWM)converter is one of the main harmonic sources in DFIGs. Thus the harmonic analysis of the converter in DFIGs is a necessary step to evaluate their harmonic pollution of DFIGs. This paper proposes a detailed harmonic modeling method to discuss the main harmonic components in a converter. In general the harmonic modeling could be divided into the low-order harmonic part (up to 30th order) and the high-order harmonic part (greater than order 30) parts in general. The low-order harmonics are produced by the circuit topology and control algorithm, and the harmonic component will be different if the control strategy changes. The high-order harmonics are produced by the modulation of the switching function to the dc variable. In this paper, the low-order harmonic modeling is established according to the directions of power flow under the vector control (VC), and the high-order harmonic modeling is established by the switching function of space vector PWM and dc currents. Meanwhile, the simulations of harmonic a components in a converter are accomplished in a real time digital simulation system. The results indicate that the proposed modeling could effectively show the harmonics distribution of the converter in DFIGs.