Parasitic plants share a common anatomical feature, the haustorium. Haustoria enable both infection and nutrient transfer, which often leads to growth penalties for host plants and yield reduction in crop species. Haustoria also reciprocally transfer substances, such as RNA and proteins, from parasite to host, but the biological relevance for such movement remains unknown. Here, we studied such interspecies transport by using the hemiparasitic plant Phtheirospermum japonicum during infection of Arabidopsis thaliana. Tracer experiments revealed a rapid and efficient transfer of carboxyfluorescein diacetate (CFDA) from host to parasite upon formation of vascular connections. In addition, Phtheirospermum induced hypertrophy in host roots at the site of infection, a form of enhanced secondary growth that is commonly observed during various parasitic plant-host interactions. The plant hormone cytokinin is important for secondary growth, and we observed increases in cytokinin and its response during infection in both host and parasite. Phtheirospermum-induced host hypertrophy required cytokinin signaling genes (AHK3,4) but not cytokinin biosynthesis genes (IPT1,3,5,7) in the host. Furthermore, expression of a cytokinin-degrading enzyme in Phtheirospermum prevented host hypertrophy. Wild-type hosts with hypertrophy were smaller than ahk3,4 mutant hosts resistant to hypertrophy, suggesting hypertrophy improves the efficiency of parasitism. Taken together, these results demonstrate that the interspecies movement of a parasite-derived hormone modified both host root morphology and fitness. Several microbial and animal plant pathogens use cytokinins during infections, highlighting the central role of this growth hormone during the establishment of plant diseases and revealing a common strategy for parasite infections of plants.cytokinin | transport | hypertrophy | parasitism | Arabidopsis P arasitic plants are widespread agricultural pests and account for ∼1% of known flowering plants species (1). Parasitism ranges from holoparasites, which depend entirely on nutrient supply from host plants, to hemiparasites, which obtain nutrients via their own photosynthesis and from their hosts (1). Many hemiparasites do not depend on parasitism but often parasitize when conditions are suitable. These hemiparasitic plants include parasitic plants such as the commonly studied Orobanchaceae species Rhinanthus minor, Triphysaria versicolor, and Phtheirospermum japonicum. Both hemiparasites and holoparasites form specialized organs called haustoria that undergo a developmental transition from proto-haustoria to mature haustoria during the penetration and infection of host tissues to acquire nutrients and water (2). Some parasitic plants such as Striga or Rhinanthus form vascular connections exclusively to host xylem via xylem bridges (xylem-feeding), whereas haustoria of other plants such as Cuscuta or Orobanche also form symplastic phloem-to-phloem connections to host plants (phloem-feeding) (1). In addition to water and nutrients, other ...