SUMMARY
Aberrant aggregation of RNA binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by progranulin haploinsufficiency
1
,
2
. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA-sequencing (snRNA-seq) to show that progranulin deficiency promotes microglial transition from a homeostatic to disease-specific state that causes endolysosomal dysfunction and neurodegeneration. These defects persist even when
Grn
−/−
microglia are cultured
ex vivo
. In addition, snRNA-seq reveals selective loss of excitatory neurons at disease end-stage, characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from
Grn
−/−
microglia is sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deleting C1qa and C3 mitigates microglial toxicity, and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.
A haustorium is the unique organ that invades host tissues and establishes vascular connections. Haustorium formation is a key event in parasitism, but its underlying molecular basis is largely unknown. Here, we use Phtheirospermum japonicum, a facultative root parasite in the Orobanchaceae, as a model parasitic plant. We performed a forward genetic screen to identify mutants with altered haustorial morphologies. The development of the haustorium in P. japonicum is induced by host-derived compounds such as 2,6-dimethoxy-p-benzoquinone. After receiving the signal, the parasite root starts to swell to develop a haustorium, and haustorial hairs proliferate to densely cover the haustorium surface. We isolated mutants that show defects in haustorial hair formation and named them haustorial hair defective (hhd) mutants. The hhd mutants are also defective in root hair formation, indicating that haustorial hair formation is controlled by the root hair development program. The internal structures of the haustoria in the hhd mutants are similar to those of the wild type, indicating that the haustorial hairs are not essential for host invasion. However, all the hhd mutants form fewer haustoria than the wild type upon infection of the host roots. The number of haustoria is restored when the host and parasite roots are forced to grow closely together, suggesting that the haustorial hairs play a role in stabilizing the host-parasite association. Thus, our study provides genetic evidence for the regulation and function of haustorial hairs in the parasitic plant.
The aim of this study was to investigate whether peptides from the extracellular loops of the tight junction protein occludin could be used as a new principle for tight junction modulation. Peptides of 4 to 47 amino acids in length and covering the two extracellular loops of the tight junction protein occludin were synthesized, and their effect on the tight junction permeability in Caco-2 cells was investigated using [14 C]mannitol as a paracellular marker. Lipopeptide derivatives of one of the active occludin peptides (OPs), synthesized by adding a lipoamino acid containing 14 carbon atoms (C 14 -) to the N terminus of the peptide, were also investigated. Peptides corresponding to the N terminus of the first extracellular loop of occludin increased the permeability of the tight junctions without causing shortterm toxicity. However, the peptides had an effect only when added to the basolateral side of the cells, which could be partly explained by degradation by apical peptidases and aggregate formation. By contrast, the lipopeptide C 14 -OP 90 -103 , which protects the peptide from degradation and aggregation, displayed a rapid apical effect. The L-and D-diastereomers of C 14 -OP 90 -103 had distinctly different effects. The D-isomer, which releases intact OP 90 -103 from the lipoamino acid, displayed a rapid and transient increase in tight junction permeability. The L-isomer, which releases OP 90 -103 more rapidly, gave a more sustained increase in tight junction permeability. In conclusion, C 14 -OP 90 -103 represents a prototype of a new class of tight junction modulators that act on the extracellular domains of tight junction proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.