2015
DOI: 10.1007/978-3-319-18818-8_22
|View full text |Cite
|
Sign up to set email alerts
|

HAWK – Hybrid Question Answering Using Linked Data

Abstract: Abstract. The decentral architecture behind the Web has led to pieces of information being distributed across data sources with varying structure. Hence, answering complex questions often required combining information from structured and unstructured data sources. We present HAWK, a novel entity search approach for Hybrid Question Answering based on combining Linked Data and textual data. The approach uses predicate-argument representations of questions to derive equivalent combinations of SPARQL query fragme… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
32
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 35 publications
(34 citation statements)
references
References 22 publications
0
32
0
2
Order By: Relevance
“…Some systems make use of the syntactic graph behind the question [135] to deduce the query intention whereas others, the knowledge graph [122]. There are systems that propose to work in either structured and unstructured data [139] or in a combination of systems [64]. Therefore, they contain very peculiar steps.…”
Section: Frameworkmentioning
confidence: 99%
See 3 more Smart Citations
“…Some systems make use of the syntactic graph behind the question [135] to deduce the query intention whereas others, the knowledge graph [122]. There are systems that propose to work in either structured and unstructured data [139] or in a combination of systems [64]. Therefore, they contain very peculiar steps.…”
Section: Frameworkmentioning
confidence: 99%
“…HAWK [139] is the first hybrid source SQA system which processes Linked Data as well as textual information to answer one input query. HAWK uses an eight-fold pipeline comprising part-of-speech tagging, entity annotation, dependency parsing, linguistic pruning heuristics for an in-depth analysis of the natural language input, semantic annotation of properties and classes, the generation of basic triple patterns for each component of the input query as well as discarding queries containining not connected query graphs and ranking them afterwards.…”
Section: Systemsmentioning
confidence: 99%
See 2 more Smart Citations
“…Ese módulo realiza una interpretación semántica de la consulta y genera la consulta en SPARQL. Finalmente, el módulo de resultados de la búsqueda es el encargado de obtener los resultados [8].Existe un gran número de trabajos recientes vinculados al procesamiento de las consultas en lenguaje natural para la web, algunos de ellos para idiomas distintos al inglés o español [13][14], o basados en el enlazado de datos (linked data) usando lógica descriptiva [15][16][17].En particular, nosotros desarrollamos un Marco Ontológico Dinámico Semántico, cuyas principales características son:• Permite usar el lenguaje natural español para realizar consultas sobre la Web.• Es basado en un conjunto de ontologías para el procesamiento de la consulta en lenguaje natural.• Posee un componente de aprendizaje ontológico, que le permite adquirir nuevo conocimiento y actualizar sus ontologías. Este aspecto es el que le permite adaptarse a su entorno.…”
unclassified