“…Particularly, in this latter case, tephra fallout hazard maps have been produced using different strategies that rely on field data of past eruptions (e.g., Orsi et al, 2004) or which combine field data and numerical modelling (Barberi et al, 1990;Bursik, 2001;Cioni et al, 2003;Macedonio et al, 1988).This latter approach is normally coupled with semi-probabilistic to fully probabilistic Monte Carlo techniques (Hurst & Smith, 2004) to sample model input parameters, and takes advantage of the great availability of tephra transport and deposition numerical models. As examples, tephra fallout hazard maps have been produced using different models such as HAZMAP (Bonasia et al, 2011;Capra et al, 2008;Costa et al, 2009;Macedonio et al, 2005), TEPHRA2 Biass et al, 2014;Bonadonna et al, 2005;Tsuji et al, 2017;Yang et al, 2021), FALL3D (Costa et al, 2006;Folch et al, 2009;Folch et al, 2020;Prata et al, 2021;Scaini et al, 2012;Vázquez et al, 2019), VOL-CALPUFF (Barsotti et al, 2018; and ASH3D (Alpízar Segura et al, 2019;IG-EPN et al, 2019;Schwaiger et al, 2012;Yang et al, 2020) models. The key elements for the modelling of tephra dispersal and for the development of probabilistic maps are: i) the identification of the eruptive scenarios that describe the eruptive history of the volcano; ii) the quantification of the uncertainty range of the eruptive source parameters (ESPs) related to each scenario; and iii) the estimation of the temporal recurrence rate and/or the probability of occurrence of the identified scenarios within defined temporal frames (Sandri et al, 2016).…”