The majority of bearingless permanent magnet slice motors (BPMSMs) used in commercially available rotary blood pumps use a two-phase configuration, but it is unclear as to whether or not a comparable three-phase configuration would offer a better performance. This study compares the performance of two-phase and three-phase BPMSM configurations. Initially, two nominal designs were manufactured and empirically tested for their performance characteristics, namely, the axial stiffness, radial stiffness, and current force. Subsequently, finite element analysis (FEA) models were developed based on these nominal devices and validated against the empirical results. Simulations were then employed to assess the sensitivity of performance characteristics to variations in seven different geometric features of the models for both configurations. Our findings indicate that the nominal three-phase design had a higher axial stiffness and radial stiffness, but resulted in a lower axial-to-radial-stiffness ratio when compared to the nominal two-phase design. Additionally, while the nominal two-phase design shows a higher current force, the nominal three-phase design proves to be slightly superior when the force generated is considered relative to the power usage. Notably, the three-phase configuration demonstrates a greater sensitivity to dimensional changes in the geometric features. We observed that alterations in the air gap and rotor length lead to the most significant variations in performance characteristics. Although most changes in specific geometric features entail equal tradeoffs, increasing the head protrusion positively influences the overall performance. Moreover, we illustrated the interdependent nature of the head height and rotor height on the performance characteristics. Overall, this study delineates the strengths and weaknesses of each configuration, while also providing general insights into the relationship between specific geometric features and performance characteristics of BPMSMs.