The heat shock protein 70 (HSPA) family and their genes have been studied in ticks and are considered as possible antigen candidates for the development of anti-tick vaccines. However, knowledge about their members, structure and function in ticks is incomplete. Based on our transcriptomic data, the full length of four HSPA genes in Haemaphysalis flava (Acari: Ixodidae) was cloned via rapid amplification of cDNA ends. The open reading frame of HSPA2A, HSPA2B, HSPA5 and HSPA9 was 1920, 1911, 1983 and 2088 bp in length, respectively. Three family signatures and one localization motif were in the encoding proteins. HSPA2A and HSPA2B were predicted to be located at cytoplasm/nucleus, whereas HSPA5 and HSPA9 were at endoplasmic reticulum and mitochondria, respectively. In silico simulation demonstrated that those proteins had distinct numbers of -helixes, extended strands and coils, and different antigenic epitopes. Expression of HSPA5 and HSPA9 in the salivary gland was significantly higher in partially-engorged female adult ticks than the fully-engorged (P < 0.01) as shown by a quantitative polymerase chain reaction. Our data indicated that H. flava ticks had at least four HSPA genes encoding proteins with different cellular locations, structures and expression profiles, suggesting their diverse roles in tick biology.