Drop impact on a hot surface heated above the saturation temperature of the fluid plays an important role in spray cooling. The heat transferred from the wall to the fluid is closely interrelated with drop hydrodynamics. If the surface temperature is below the Leidenfrost temperature, the heat transport strongly depends on the transport phenomena in the vicinity of the three-phase contact line. Due to extremely high local heat flux, a significant fraction of the total heat flow is transported through this region. The local transport processes near the three-phase contact line, and, therefore, the total heat transport, are determined by the wall superheat, contact line velocity, system pressure, fluid composition, surface structure and physical properties on the wall. The effect of the aforementioned influencing parameters on fluid dynamics and heat transport during evaporation of a single meniscus in a capillary slot are studied in a generic experimental setup. The hydrodynamics and evolution of wall heat flux distribution during the impact of a single drop onto a hot wall are also studied experimentally by varying the impact parameters, wall superheat, system pressure, and wall topography. In addition, the fluid dynamics and heat transport behavior during vertical and horizontal coalescence of multiple drops on a heated surface are studied experimentally.