Sustainable facilities management (SFM) opens the door of opportunity for companies to evaluate the quality of resources and environment management at their facilities. It enables the principles of sustainable development. There is still inefficiency in quantitative research of integrating environmental factors, particularly multi-source data, to monitor and control complicated systems in buildings. The objective of this research is to develop an effective method to dynamically optimize energy efficiency in SFM plans and strategies. The research question is: can the integrated proactive method reduce energy consumption with dynamically adjustable controls? This paper proposes a coordinated proactive control method using dynamic time-series prediction (PCM-DTSP) for SFM, which optimizes system controls by integrating the prediction results and monitored environmental-data. The results show that, after optimization, the temperature fluctuations are reduced to 33.3%. The average temperature and maximum temperature are reduced by 8% and 13.1%, respectively. The instantaneous power consumption was reduced by 0.17 KW per hour for each cooling system unit. The PCM-DTSP method can significantly optimize energy efficiency, which paves the way for long-term comprehensive energy management. The contribution of the research lies in its optimized control of energy consumption, temperature stabilization, and improvement of environmental comfort solutions, which can be generalized to various types of buildings.