Metal halide perovskite nanocrystals (NCs), as a new class of light-emitting and light-harvesting materials, have recently attracted intensive attention for an impressive variety of optoelectronic applications. However, the lead toxicity and poor stability of such materials severely restrict their practical applications and future commercialization. Lead-free perovskite NCs and their derivatives, designed by the reasonable chemical substitution of Pb with other nontoxic elements, are recently booming as an attractive alternative to lead-based counterparts. In this review, we firstly present a comprehensive overview of currently explored lead-free perovskite NCs with an emphasis on their design routes, morphologies, optoelectronic properties, and environmental stability issues. Then, we discuss the preliminary achievements of lead-free perovskite NCs in versatile optoelectronic applications, such as light-emitting devices, solar cells, photodetectors, and photocatalysis. We finish this review with a critical outlook into the currently existing challenges and possible development opportunities of this rapidly evolving field.