A new class of co-catalytic system was developed with homogeneous CuI and di-tert-butyl azodicarboxylate for aerobic dehydrogenation of 1,2,3,4-tetrahydroquinolines under mild conditions. The developed co-catalytic system is consisting of di-tert-butyl azodicarboxylate-mediated dehydrogenation of 1,2,3,4-tetrahydroquinoline and aerobic oxidative regeneration of di-tert-butyl azodicarboxylate from di-tert-butyl hydrazodicarboxylate using molecular oxygen as a terminal oxidant. A variety of quinolines were efficiently synthesized by the developed Cu and di-tert-butyl azodicarboxylate co-catalytic system.
Recently, various fruitful organic reactions such as a catalytic Mitsunobu reaction were reported by virtue of alkyl 2-phenylazocarboxylates, however, the synthesis of alkyl 2-phenylazocarboxylates largely depended on the stoichiometric use of toxic oxidants. In this manuscript, an environment-friendly aerobic oxidative transformation of alkyl 2-phenylhydrazinecarboxylates to alkyl 2-phenylazocarboxylates is disclosed. The use of CuCl and DMAP system efficiently catalyzed the aerobic oxidation of alkyl 2-phenylhydrazinecarboxylates under mild conditions. The reaction rate of the present Cu-catalysis was much faster than that of the previously reported Fe-catalysis, and a variety of azo products were synthesized within 3 h. The present protocol was effective on larger scale. It was observed that the produced azo compound could undergo various reactions without isolation through one-pot sequential protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.