“…The substituent effects [ΔΔ H het (Fe–O)'s] of the theoretical Fe–O heterolytic energies for series 1 calculated by the TPSSTPSS/6‐311 + G(d,p)//B3LYP/6‐31G(d) method are also correlated with the experimental and computational substituent effects on acidities of p ‐G‐C 6 H 4 OH . The correlation coefficients are 0.99(48.9%EtOH, Δp K a , acid–base titration), 1.00(95.0%EtOH, Δp K a , acid–base titration), 1.00(H 2 O, Δp K a , solution calorimetry), 0.99(H 2 O, Δp K a , spectrophotometric method), 1.00(H 2 O, Δp K a ), 1.00(MeOH, Δp K a , ultraviolet spectrophotometry, equilibrium equations), 0.99(H 2 O, ΔΔ G 0 ), 1.00(H 2 O, Δp K a ), 0.96(g, δΔ G , pulsed ion cyclotron resonance), 1.00(H 2 O, δΔ G i 0 , solution calorimetry), 0.99(DMSO, δΔ G i 0 , solution calorimetry), 0.99(DMSO, δΔ H i 0 , solution calorimetry), 1.00(g, δΔ G , pulsed electron beam high‐pressure mass spectrometer), 0.99(H 2 O et al ., Δp K a , light absorbance measurements combined with electrometric measurements of pH, measurements of pH changes during titrations using glass electrodes et al . ), 0.99(g, δ x Δ E a 0 (OH), ab initio molecular orbital calculations/STO‐3G//standard model geometries), 1.00(g, δΔ G 0 (g), ion cyclotron resonance equilibrium constant method)(Table , Fig.…”