Background
Lipid droplets (LDs) present in land plants serve as an essential energy and carbon reserve for seed germination and seedling development. Oleosins, the most abundant structural proteins of LDs, comprise a small family involved in LD formation, stabilization and degradation. Despite their importance, our knowledge on oleosins is still poor in Euphorbiaceae, a large plant family that contains several important oil-bearing species.
Results
To uncover lineage-specific evolution of oleosin genes in Euphorbiaceae, in this study, we performed a genome-wide identification and comprehensive comparison of the oleosin family in Euphorbiaceae species with available genome sequences, i.e. castor bean (Ricinus communis), physic nut (Jatropha curcas), tung tree (Vernicia fordii), Mercurialis annua, cassava (Manihot esculenta) and rubber tree (Hevea brasiliensis), and a number of five, five, five, five, eight and eight members were found, respectively. Synteny analysis revealed one-to-one collinear relationship of oleosin genes between the former four (i.e. castor bean, physic nut, tung tree and M. annua) as well as latter two species (i.e. cassava and rubber tree), whereas one-to-one and one-to-two collinear relationships were observed between physic nut and cassava, reflecting the occurrence of one recent whole-genome duplication (WGD) in the last common ancestor of cassava and rubber tree. The presence of five ortholog groups representing three previously defined clades (i.e. U, SL and SH) dates back at least to the Malpighiales ancestor, because they are also conserved in poplar (Populus trichocarpa), a tree having experienced one Salicaceae-specific recent WGD. As observed in poplar, WGD was shown to be the main driver for the family expansion in both cassava and rubber tree. Nevertheless, same retention patterns of WGD-derived duplicates observed in cassava and rubber tree are somewhat different from that of poplar, though certain homologous fragments are still present in rubber tree. Further transcriptional profiling revealed an apparent seed-predominant expression pattern of oleosin genes in physic nut, castor bean and rubber tree. Moreover, structure and expression divergence of paralogous pairs were also observed in both cassava and rubber tree.
Conclusion
Comparative genomics analysis of oleosin genes reported in this study improved our knowledge on lineage-specific family evolution in Euphorbiaceae, which also provides valuable information for further functional analysis and utilization of key members and their promoters.