Cemented paste backfill (CPB) is a common environmentally friendly mining approach. However, it remains undetermined whether CPB pollutes underground mine water. Tank leaching analysis of a CPB mass in distilled water was performed for 120 d, and water quality was tested in situ for a long-term pollution assessment. Computerized tomography was also used to determine the CPB micro-pore structure and ion-leaching mechanism. The dissolved Zn2+, Pb2+ and As5+ concentrations in the leachate peaked at 0.56, 0.11 and 0.066 mg/L, respectively, whereas the Co2+ and Cd2+ concentrations were lower than the detection limit. The CPB porosity decreased from 46.07% to 40.88% by soaking, and 80% of the pore diameters were less than 13.81 μm. The permeability decreased from 0.8 to 0.5 cm/s, and the quantity, length, and diameter of the permeate channels decreased with soaking. An in-situ survey showed novel selective solidification. The Zn2+ concentration in the mine water was 10–20 times that of the background water, and the Pb2+ concentration was 2–4 times the regulated value. Although the Pb2+ content decreased significantly with mining depth, there remains a serious environmental risk. Mine water pollution can be reduced by adding a solidifying agent for Pb2+ and Zn2+, during CPB preparation.