Protein-based pharmaceutical
products are subject to a variety
of environmental stressors, during both production and shelf-life.
In order to preserve their structure, and, therefore, functionality,
it is necessary to use excipients as stabilizing agents. Among the
eligible stabilizers, cyclodextrins (CDs) have recently gained interest
in the scientific community thanks to their properties. Here, a computational
approach is proposed to clarify the role of β-cyclodextrin (βCD)
and 2-hydroxypropyl-β-cyclodextrin (HPβCD) against granulocyte
colony-stimulating (GCSF) factor denaturation at the air–water
and ice–water interfaces, and also in bulk water at 300 or
260 K. Both traditional molecular dynamics (MD) simulations and enhanced
sampling techniques (metadynamics, MetaD) are used to shed light on
the underlying molecular mechanisms. Bulk simulations revealed that
CDs were preferentially included within the surface hydration layer
of GCSF, and even included some peptide residues in their hydrophobic
cavity. HPβCD was able to stabilize the protein against surface-induced
denaturation in proximity of the air–water interface, while
βCD had a destabilizing effect. No remarkable conformational
changes of GCSF, or noticeable effect of the CDs, were instead observed
at the ice surface. GCSF seemed less stable at low temperature (260
K), which may be attributed to cold-denaturation effects. In this
case, CDs did not significantly improve conformational stability.
In general, the conformationally altered regions of GCSF seemed not
to depend on the presence of excipients that only modulated the extent
of destabilization with either a positive or a negative effect.