Bacillus thuringiensis Cry toxins are used worldwide as insecticides in agriculture, in forestry, and in the control of disease transmission vectors. In the lepidopteran Manduca sexta, cadherin (Bt-R 1 ) and aminopeptidase-N (APN) function as Cry1A toxin receptors. The interaction with Bt-R 1 promotes cleavage of the amino-terminal end, including helix ␣-1 and formation of prepore oligomer that binds to APN, leading to membrane insertion and pore formation. Loops of domain II of Cry1Ab toxin are involved in receptor interaction. Here we show that Cry1Ab mutants located in domain II loop 3 are affected in binding to both receptors and toxicity against Manduca sexta larvae. Interaction with both receptors depends on the oligomeric state of the toxin. Monomers of loop 3 mutants were affected in binding to APN and to a cadherin fragment corresponding to cadherin repeat 12 but not with a fragment comprising cadherin repeats 7-12. In contrast, the oligomers of loop 3 mutants were affected in binding to both Bt-R 1 fragments but not to APN. Toxicity assays showed that either monomeric or oligomeric structures of Cry1Ab loop 3 mutations were severely affected in insecticidal activity. These data suggest that loop 3 is differentially involved in the binding with both receptor molecules, depending on the oligomeric state of the toxin and also that possibly a "ping pong" binding mechanism with both receptors is involved in toxin action.Bacillus thuringiensis is a bacterium that produces crystalline inclusions formed by insecticidal proteins, called Cry toxins, during the sporulation phase of growth. Cry toxins are toxic to different insect orders as well as to other invertebrates, such as nematodes, mites, and protozoa (1). Cry toxins have been used worldwide in the control of insect pests in agriculture, either as transgenic crops or as spray formulations.The molecular mechanism proposed to describe the action of Cry1A toxins, which are active against different lepidopteran insect species, involves several steps. After larval ingestion of the crystalline inclusions, these are solubilized in midgut lumen and activated by proteases releasing a toxic 65-kDa fragment that binds, in a sequential manner, with at least two receptors located in midgut microvilli. The first interaction occurs with cadherin protein (Bt-R 1 2 in the case of Manduca sexta). This interaction promotes further proteolytic processing of the N-terminal end, including helix ␣-1 of the toxin, resulting in the formation of a prepore oligomeric structure (2). The oligomer has higher affinity to secondary receptors, which are anchored by glycosylphosphatidylinositol, such as aminopeptidase-N (APN) or alkaline phosphatase in the case of M. sexta or Heliothis virescens, respectively (3, 4). Glycosylphosphatidylinositol-anchored receptors are located in specific membrane regions called lipid rafts, where the oligomer inserts into the membrane-forming pores, disrupting the osmotic equilibrium and leading to cell death (1, 5). Although this mechanism of action is g...