2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA) 2020
DOI: 10.1109/icirca48905.2020.9183287
|View full text |Cite
|
Sign up to set email alerts
|

Helmet and Number Plate detection of Motorcyclists using Deep Learning and Advanced Machine Vision Techniques

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
3
0
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 12 publications
(5 citation statements)
references
References 12 publications
0
3
0
2
Order By: Relevance
“…Dalam real-time pendeteksian objek kecepatan sangat penting dalam pendeteksian objek dikarenakan berbeda pada sebuah gambar, pada suatu vidio dapat mengolah lebih dari 24 frame per second (FPS) atau 24 frame per detik. Jika proses pendeteksian objek terlalu lama maka vidio yang dihasilkan kurang baik, akan mengalami delay pada setiap frame sehingga vidio menjadi patah-patah (Ding et al 2019) Dengan menggunakan pendeteksian objek metode YOLO pada suatu sistem dapat membantu mengklasifikasi setiap jenis kendaraan yang melintas pada jalan raya secara real-time pada rekaman vidio (Khan, Nagori, and Naik 2020) . Jenis kendaraan yang melintas akan terdeteksi otomatis berdasarkan nilai hasil tingkat akurasinya dan klasifikasi.…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Dalam real-time pendeteksian objek kecepatan sangat penting dalam pendeteksian objek dikarenakan berbeda pada sebuah gambar, pada suatu vidio dapat mengolah lebih dari 24 frame per second (FPS) atau 24 frame per detik. Jika proses pendeteksian objek terlalu lama maka vidio yang dihasilkan kurang baik, akan mengalami delay pada setiap frame sehingga vidio menjadi patah-patah (Ding et al 2019) Dengan menggunakan pendeteksian objek metode YOLO pada suatu sistem dapat membantu mengklasifikasi setiap jenis kendaraan yang melintas pada jalan raya secara real-time pada rekaman vidio (Khan, Nagori, and Naik 2020) . Jenis kendaraan yang melintas akan terdeteksi otomatis berdasarkan nilai hasil tingkat akurasinya dan klasifikasi.…”
Section: Pendahuluanunclassified
“…Menurut (Khan, Nagori, and Naik 2020) Menurut (Benjelloun et al 2020) dalam penelitiannya yang berjudul " The comparison between two methods of object detection: Fast Yolo model and Delaunay Triangulation " Hasil penelitian pendeteksian memperoleh nilai presisi untuk model pertama 76,13%, dan untuk pendekatan kedua 50%. Jaringan saraf mengalami penyesuaian berlebihan jika kumpulan data terlalu kecil, yang berarti bahwa saya memiliki kinerja yang sangat baik dengan set pelatihan tetapi sangat kinerja yang buruk dengan set tes.…”
Section: Pendahuluanunclassified
“…Whereas the helmet detection [1], [2], & [3] uses deep convolutional neural network, the foreground object in the motorbike identification step is also still obtained using classical thresholding, which would be quite poor in busy scenario. This is suggested in [4] & [5] to be using YOLOv3 [6] method is used to detect the motorcyclists wearing helmet however, no motorbike recognition is verified. In [7] and [8], we initially detected the motorbike & man inside the image using the YOLOv3 method, and afterwards they evaluated the overlapped volume of the grid cell between both the motorbike and man to identify the individual riding the motorbike.…”
Section: Related Work a Helmet Detectionmentioning
confidence: 99%
“…In [29], [30] and [31], although the helmet detection adopts the deep learning method, the traditional background subtraction is still used to obtain the foreground target in the motorcycle detection stage, which will be very poor in the crowded scene. In [32] and [33], it is proposed to use YOLOv3 [34] algorithm to detect whether a motorcyclist is wearing a helmet, but the detection of motorcycles is not reported. In [35] and [36], they first used the YOLOv3 algorithm to detect the motorcycle and person in the picture, and then calculated the overlapping area of the bounding box between the motorcycle and the person to determine the person on the motorcycle.…”
Section: Helmet Detection Based On Deep Learningmentioning
confidence: 99%
“…We find that bicycles, forward-looking tricycles and motorcycles are similar in their riding state. In [32] and [33], they only consider one motorcycle category, which will cause a lot of false detections. Therefore, in order to reduce the false detection rate, we detect three categories at this stage, that is, motorcycle, bicycle and tricycle.…”
Section: Motorcycle Detectionmentioning
confidence: 99%