This paper addresses the construction of a family of wavelets based on halfband polynomials. An algorithm is proposed that ensures maximum zeros at ω = π for a desired length of analysis and synthesis filters. We start with the coefficients of the polynomial (x+1)(n) and then use a generalized matrix formulation method to construct the filter halfband polynomial. The designed wavelets are efficient and give acceptable levels of peak signal-to-noise ratio when used for image compression. Furthermore, these wavelets give satisfactory recognition rates when used for feature extraction. Simulation results show that the designed wavelets are effective and more efficient than the existing standard wavelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.