Zinc protoporphyrin IX (ZnPP), an endogenous heme analogue that inhibits heme oxygenase (HO) activity, represses tumor growth. It can also translocate into the nucleus and upregulate heme oxygenase 1 (HMOX1) gene expression. Here, we demonstrate that tumor cell proliferation was inhibited by ZnPP, whereas tin protoporphyrin (SnPP), another equally potent HO-1 inhibitor, had no effect. Microarray analysis on 128 tumorigenesis related genes showed that ZnPP suppressed genes involved in cell proliferation and angiogenesis. Among these genes, CYCLIN D1 (CCND1) was specifically inhibited as were its mRNA and protein levels. Additionally, ZnPP inhibited CCND1 promoter activity through an Sp1 and Egr1 overlapping binding site (S/E). We confirmed that ZnPP modulated the S/E site, at least partially by associating with Sp1 and Egr1 proteins rather than direct binding to DNA targets. Furthermore, administration of ZnPP significantly inhibited cyclin D1 expression and progression of a B-cell leukemia/lymphoma 1 tumor in mice by preferentially targeting tumor cells. These observations show HO independent effects of ZnPP on cyclin D1 expression and tumorigenesis.
Zinc protoporphyrin IX (ZnPP)2 is a metabolite formed in trace amounts during heme biosynthesis. In this process, the final reaction is the chelation of zinc in the protoporphyrin ring, whereas heme is formed by chelation of iron in the ring. During periods of iron insufficiency or impaired iron utilization, ZnPP formation is enhanced. Clinically, ZnPP quantification is a sensitive and specific tool for measuring iron mineral status and metabolism (1). In addition, ZnPP regulates heme catabolism through competitively inhibiting the activity of heme oxygenase (HO), the rate-limiting enzyme in the heme degradation pathway that produces carbon monoxide and biliverdin. The latter is rapidly reduced to bilirubin by biliverdin reductase. Thus, ZnPP has potential therapeutic applications in controlling exaggerated bilirubin formation leading to neonatal jaundice (2). Moreover, because the by-products of the HO reaction, carbon monoxide and bilirubin, are antioxidants, the potential effects of ZnPP have been studied in numerous diseases, including cancer, such as chronic myelogenous leukemia (3-6).Whereas ZnPP has been largely studied in relation to its inhibition of HO activity, reports show that ZnPP could exert cellular effects independent of HO activity (7,8). In kinetic assays, ZnPP inhibited the soluble guanylyl cyclase activity independent of HO-1 (9). In vitro studies showed that ZnPP directly interacts with human immunodeficiency virus type 1 reverse transcriptase and modulates its activity (10). We showed that ZnPP induces the expression of HMOX1 and TP53 genes and localizes to the nucleus (11). Although the underling mechanism is unknown, zinc mesoporphyrin, another analogue of heme, has been shown to induce HMOX1 expression by accelerating Bach1 protein degradation (12). Heme itself can affect gene expression by associating with transcription factors (13,14). Th...