Aim: To investigate the mechanisms underlying the protective effects of quercetin-rutinoside (rutin) and its aglycone quercetin against CCl 4 -induced liver damage in mice. Methods: BALB/cN mice were intraperitoneally administered rutin (10, 50, and 150 mg/kg) or quercetin (50 mg/kg) once daily for 5 consecutive days, followed by the intraperitoneal injection of CCl 4 in olive oil (2 mL/kg, 10% v/v). The animals were sacrificed 24 h later. Blood was collected for measuring the activities of ALT and AST, and the liver was excised for assessing Cu/Zn superoxide dismutase (SOD) activity, GSH and protein concentrations and also for immunoblotting. Portions of the livers were used for histology and immunohistochemistry. Results: Pretreatment with rutin and, to a lesser extent, with quercetin significantly reduced the activity of plasma transaminases and improved the histological signs of acute liver damage in CCl 4 -intoxicated mice. Quercetin prevented the decrease in Cu/Zn SOD activity in CCl 4 -intoxicated mice more potently than rutin. However, it was less effective in the suppression of nitrotyrosine formation. Quercetin and, to a lesser extent, rutin attenuated the inflammation in the liver by down-regulating the CCl 4 -induced activation of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α) and cyclooxygenase (COX-2). The expression of inducible nitric oxide synthase (iNOS) was more potently suppressed by rutin than by quercetin. Treatment with both flavonoids significantly increased NF-E2-related factor 2 (Nrf2) and heme oxygenase (HO-1) expression in injured livers, although quercetin was less effective than rutin at an equivalent dose. Quercetin more potently suppressed the expression of transforming growth factor-β1 (TGF-β1) than rutin. Conclusion: Rutin exerts stronger protection against nitrosative stress and hepatocellular damage but has weaker antioxidant and antiinflammatory activities and antifibrotic potential than quercetin, which may be attributed to the presence of a rutinoside moiety in position 3 of the C ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.