2017
DOI: 10.1021/jacs.7b07531
|View full text |Cite
|
Sign up to set email alerts
|

Hemiindigo: Highly Bistable Photoswitching at the Biooptical Window

Abstract: Hemiindigo is a long known chromophore that absorbs in the blue part of the spectrum but has almost completely been ignored as potential photoswitch. Herein we show how the absorption of hemiindigo is shifted to the red part of the visible spectrum and how nearly perfect photoswitching can be achieved using blue or green and red light. Five derivatives were investigated giving very high isomeric yields in both switching directions, i.e. >90% E isomer after irradiation with 470 to 530 nm light and 99% Z isomer … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

4
116
1
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 110 publications
(123 citation statements)
references
References 61 publications
4
116
1
2
Order By: Relevance
“…The maxima of the Z → E PISA spectra of HIs 1, 2 and 3 occur at 450, 410, and 470 nm, respectively, whereas the corresponding E → Z PISA spectra have maxima at 505, 490, and 520 nm, respectively. The significant red shift observed for the peaks in the PISA spectra of HI 3 compared to HI 1 and 2 can be explained by the presence of the strong electron donating julolidine group, as found recently for the neutral analogue of this compound . Band maxima for the absorption spectra of HIs in acetonitrile solution are shifted by 30–70 nm to longer wavelength compared to the peaks in the PISA spectra (see Figures (g–i)).…”
Section: Figuresupporting
confidence: 77%
See 2 more Smart Citations
“…The maxima of the Z → E PISA spectra of HIs 1, 2 and 3 occur at 450, 410, and 470 nm, respectively, whereas the corresponding E → Z PISA spectra have maxima at 505, 490, and 520 nm, respectively. The significant red shift observed for the peaks in the PISA spectra of HI 3 compared to HI 1 and 2 can be explained by the presence of the strong electron donating julolidine group, as found recently for the neutral analogue of this compound . Band maxima for the absorption spectra of HIs in acetonitrile solution are shifted by 30–70 nm to longer wavelength compared to the peaks in the PISA spectra (see Figures (g–i)).…”
Section: Figuresupporting
confidence: 77%
“…Whereas DFT calculations predict a near planar configuration for E isomers of the three HIs, the optimized Z isomers show a pronounced twist around the single bond connecting the aniline (julolidine) and indigo planes (torsion angle θ in Figure (a)). The torsion angles θ for the lowest energy conformers of HIs 1 , 2 and 3 are 45°, 52° and 52°, respectively, which are somewhat larger than those calculated at the B3LYP‐GD3BJ/6‐311G(d,p) level of theory with polarizable continuum model for the neutral, solvated Z isomer analogues of 1 (34°) and 3 (37°) …”
Section: Figurementioning
confidence: 66%
See 1 more Smart Citation
“…HI derivatives with electron‐rich aromatic substituents demonstrated mutual photoswitching with red and green light, with PSS>90 % for both isomers and thermal half‐lives of up to 83 years at 25 °C. Due to similar energies of both isomers E and Z , thermal equilibration does not favor either of them …”
Section: Molecular Photoswitchesmentioning
confidence: 99%
“…[4][5][6][7] Während die intramolekulare Vernetzung synthetischer Polymere sich aller Werkzeuge der synthetischen Chemie bedienen kann, um Sekundär-und Te rtiärstrukturen nachzuahmen, [8][9][10][11][12] bestehen Proteine in der Natur aus mehreren Peptidsträngen, die sich zu einer Quartärstruktur zusammenlagern, die ihre Funktionsweise bestimmt. [14][15][16][17][18][19] Da photoreaktive Einheiten nur durch Photonen aktiviert werden kçnnen, welche die gleiche Energie wie ihr angeregter Zustand aufweisen, wurden in den letzten Jahren große Bemühungen angestrengt Systeme verschiedener Chromophore zu entwickeln, die nur bei bestimmten Wellenlängen absorbieren, um eine exklusive Adressierbarkeit mit exakt gewählten Wellenlängen zu ermçglichen. [13] Um einen synthetischen Zugang zu solch hierarchischen makromolekularen Architekturen zu erhalten, spielt die orthogonale Ligationschemie von intra-und intermolekularen Kettenreaktionen eine entscheidende Rolle.W ährend klassische, thermisch gesteuerte organische Chemie das Potential innehält solche Systeme zu verwirklichen, würde dies den Einsatz zusätzlicher Reagenzien und chemischer Modifikation der reaktiven Gruppen erfordern.…”
unclassified