Polyethersulfone (PES) dead-end tubes were fabricated by means of a phase inversion technique, and then were used as scaffolds for artificial lacrimal glands. The wall of the dead-end tubes could allow nutrients such as ascorbic acid, L-tryptophan, and glucose to pass through, but prevents rat IgG from passing through. Lacrimal acinar epithelial cells of Sprague-Dawley rats were cultured in vitro, and cell-associated secretory component was detected with an immunofluorescence technique to identify the acinar cells. The second passage of the cells showed high degree of cellular differentiation, and was used to seed on the PES tubes. The results showed that the PES tube could support the attachment, the growth, and the proliferation of the rat lacrimal acinar cells. Thus, PES is a substrate for the growth of lacrimal acinar cells and may be a useful scaffolding biomaterial for tissue engineering, such as a scaffold for artificial lacrimal glands.