Biocompatible Polysulfone (PSf) hemodialysis membranes were prepared by phase inversion technique using poly (ether-imide) (PEI) as the modification agent and Polyethylene glycol (PEG-200) as the pore former. The effect of PSf/PEI blend ratio on the morphology, hydrophilicity, water content, porosity, glass transition temperature, mechanical strength, biocompatibility and permeation rate of the prepared membranes were studied and were found to be improved significantly by the incorporation of PEI in the dope solution. The scanning electron microscopy (SEM) studies revealed that, incorporation of PEI resulted in the formation of spongy sub-layer and increased the connectivity of pores between sub-layer and bottom layer. The water content and permeation rate of the membranes of PSf/ PEI blend membranes were increased considerably indicating the enhancement of hydrophilicity and it was supported by lower contact angle values of the blend membranes. The existence of single well defined Tg over entire composition established the compatibility between the components in blend membranes. The biocompatibility of membranes was investigated through protein adsorption, platelet adhesion and thrombus formation on the membrane surface. Anticoagulant activity of PSf/PEI blend membranes was evaluated by measuring the activated partial thrombin time (APTT), prothrombin time (PT), thrombin time (TT) and fibrinogen time (FT). The results revealed that antithrombogenicity of PSf/PEI blend membranes was increased significantly. The efficiency of these membranes in removal of urea, creatinine and vitamin B 12 were studied and found to be improved for blend membranes. Thus, it is worth mentioning to note that, the biocompatible PSf/PEI blend membranes prepared in this study would offer immense potential in hemodialysis.