2023
DOI: 10.48550/arxiv.2301.08852
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

HeMPPCAT: Mixtures of Probabilistic Principal Component Analysers for Data with Heteroscedastic Noise

Abstract: Mixtures of probabilistic principal component analysis (MPPCA) is a well-known mixture model extension of principal component analysis (PCA). Similar to PCA, MPPCA assumes the data samples in each mixture contain homoscedastic noise. However, datasets with heterogeneous noise across samples are becoming increasingly common, as larger datasets are generated by collecting samples from several sources with varying noise profiles. The performance of MPPCA is suboptimal for data with heteroscedastic noise across sa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?