Fourier Transform - Signal Processing and Physical Sciences 2015
DOI: 10.5772/59766
|View full text |Cite
|
Sign up to set email alerts
|

Henstock-Kurzweil Integral Transforms and the Riemann-Lebesgue Lemma

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 19 publications
0
1
0
Order By: Relevance
“…Many researchers have studied Henstock-Kurzweil integral, Orlicz spaces, inclusion properties, and ℋ -Orlicz spaces. Several studies on Henstock-Kurzweil integrals include discussing some properties of Henstock-Kurzweil integrable function in n-dimensional spaces (Herlinawati, 2021), the different definition of Henstock-Kurzweil integral on a closed bounded interval by using primitive (Leng & Yee, 2018), Henstock-Kurzweil integral on Riezs Spaces (Boccuto et al, 2012), generalization of this integral (Malý & Kuncová, 2019), the distributional Henstock-Kurzweil integral and also applications in integral and differential equation (Liu, 2016), the Henstock-Kurzweil transform (Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012) (Mendoza-Torres et al, 2015Mendoza Torres et al, 2002;Sánchez-Perales et al, 2012;Talvila, 2002), and inclusion relations for several spaces such as Lebesgue spaces, Henstock-Kurzweil spaces, and bounded variation spaces (Mendoza Torres et al, 2009).…”
Section: A Introductionmentioning
confidence: 99%
“…Many researchers have studied Henstock-Kurzweil integral, Orlicz spaces, inclusion properties, and ℋ -Orlicz spaces. Several studies on Henstock-Kurzweil integrals include discussing some properties of Henstock-Kurzweil integrable function in n-dimensional spaces (Herlinawati, 2021), the different definition of Henstock-Kurzweil integral on a closed bounded interval by using primitive (Leng & Yee, 2018), Henstock-Kurzweil integral on Riezs Spaces (Boccuto et al, 2012), generalization of this integral (Malý & Kuncová, 2019), the distributional Henstock-Kurzweil integral and also applications in integral and differential equation (Liu, 2016), the Henstock-Kurzweil transform (Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012)(Sánchez-Perales et al, 2012) (Mendoza-Torres et al, 2015Mendoza Torres et al, 2002;Sánchez-Perales et al, 2012;Talvila, 2002), and inclusion relations for several spaces such as Lebesgue spaces, Henstock-Kurzweil spaces, and bounded variation spaces (Mendoza Torres et al, 2009).…”
Section: A Introductionmentioning
confidence: 99%