The development of cardiopulmonary bypass (CPB) has been one of the greatest technical advancements in cardiovascular medicine. With heparin anticoagulation, this device can safely replace the circulatory and gas-exchanging functions of the heart and lung, facilitating complex cardiac operations. Limitations still exist however, related to blood reactions at the biomaterial surface, such as cell activation, inflammation and low-grade thrombosis. In this brief review, the thought processes which paralleled the development of CPB biocompatible surfaces such as heparin-coating, will be explored, as well as current theories on the suspected mechanisms by which heparin-coated surfaces act as an anti-inflammatory device during CPB. Results with new surfaces for CPB designed to capitalize on superior protein adsorption properties, such as surface modifying additive (SMA) and poly (2-methoxyethylacrylate) (PMEA), will also be described. Finally, the significance of biomaterial-independent blood activation will be discussed, emphasizing the current need to develop strategies utilizing optimal biomaterials, modified surgical technique and pharmacologic therapy to minimize the systemic complications of CPB.