Despite recent experiments and simulations suggesting that small-molecule inhibitors and some post-translational modifications (e.g., glycosylation and ubiquitination) can suppress the pathogenic aggregation of proteins due to steric hindrance, the effect of steric hindrance on amyloid formation has not been systematically studied. Based on Monte Carlo simulations using a coarse-grained model for amyloidogenic proteins and a hard sphere acting as steric hindrance, we investigated how steric hindrance on proteins could affect amyloid formation, particularly two steps of primary nucleation, namely, oligomerization and conformational conversion into a β-sheet-enriched nucleus. We found that steric spheres played an inhibitory role in oligomerization with the effect proportional to the sphere radius R S , which we attributed to the decline in the nonspecific attractions between proteins. During the second step, small steric spheres facilitated the conformational conversion of proteins while large ones suppressed the conversion. The overall steric effect on amyloid nucleation was inhibitory regardless of R S . As R S increased, oligomeric assemblies changed from amorphous into sheet-like, structurally ordered species, reminiscent of the structure of amyloid fibrils. The oligomers with large R S were off-pathway with their ordered structures induced by the competition between steric hindrance and nonspecific attractions of soluble proteins. Interestingly, the equimolar mixture of proteins with and without steric hindrance amplified the sterically inhibitory effect by increasing the energy barrier of protein's conformational conversion. The physical mechanisms and biological implications of the above results are discussed. Our findings improve the current understanding of how nature regulates protein aggregation and amyloid formation by steric hindrance.