This study aimed to investigate, for the first time, the chemical composition and antioxidant activity of fluid extracts obtained from three Romanian cultivars of haskap berries (Lonicera caerulea L.) var. Loni, bitter cherries (Prunus avium var. sylvestris Ser.) var. Silva, and pomace from red grapes (Vitis vinifera L.) var. Mamaia, and their capacity to modulate in vitro steatosis, in view of developing novel anti-obesity products. Total phenolic, flavonoid, anthocyanin, and ascorbic acid content of fluid extracts was spectrophotometrically assessed and their free radical scavenging capacity was evaluated using Trolox Equivalent Antioxidant Capacity (TEAC) and free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition assays. The Pearson coefficients showed a moderate correlation between the antioxidant activity of fluid extracts and their phenolic content, but a strong correlation between anthocyanin and ascorbic acid content. HPLC analysis identified and quantified the main phenolic compounds of chlorogenic and syringic acid, catechin, and glycosylated kaempferol, apigenin, and quercetin, in variable proportions. An in vitro experimental model of steatosis was developed in HepG2 hepatocytes treated with a mixture of free fatty acids. Cell culture analyses showed that cytocompatible concentrations of fluid extracts could significantly reduce the lipid accumulation and inhibit the reactive oxygen species, malondialdehyde, and nitric oxide secretion in stressed hepatocytes. In conclusion, these results put an emphasis on the chemical compounds’ high antioxidant and liver protection capacity of unstudied fluid extracts obtained from Romanian cultivars of bitter cherries var. Silva and pomace of red grapes var. Mamaia, similar to the fluid extract of haskap berries var. Loni, in particular, the positive modulation of fat deposition next to oxidative stress and the lipid peroxidation process triggered by fatty acids in HepG2 hepatocytes. Consequently, this study indicated that these fluid extracts could be further exploited as hepatoprotective agents in liver steatosis, which provides a basis for the further development of novel extract mixtures with synergistic activity as anti-obesity products.