2014
DOI: 10.29057/esh.v2i4.1076
|View full text |Cite
|
Sign up to set email alerts
|

Herramientas de minería de datos

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
0
0
2

Year Published

2017
2017
2022
2022

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(5 citation statements)
references
References 0 publications
0
0
0
2
Order By: Relevance
“…The CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology was used. According to [14], [15], [16], it is "one of the models used, mainly, in academic and industrial environments and the most widely used reference guide in the development of data mining projects". It comprises six phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.…”
Section: Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…The CRISP-DM (Cross-Industry Standard Process for Data Mining) methodology was used. According to [14], [15], [16], it is "one of the models used, mainly, in academic and industrial environments and the most widely used reference guide in the development of data mining projects". It comprises six phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.…”
Section: Methodsmentioning
confidence: 99%
“…In the modeling phase, the classification model with decision trees was selected as the most appropriate data mining technique to solve the research problem due to the ease and simplicity to interpret the patterns obtained [17][18][19]. This technique has several advantages: first, the reasoning process behind the model is clearly evident when examining the tree, contrary to other black box modeling techniques, where the internal logic can be difficult to figure out; second, the process automatically includes only the attributes that really matter in decision-making and omit the ones that do not contribute to the accuracy of the tree [20][21].…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Cuando más particiones permitamos más expresivos podrán ser los árboles de decisión, asimismo cuando más particiones elijamos la complejidad del algoritmo será mayor. (Hernandez J. , 2008). La expresividad resultante de las particiones obtenidas se conoce como expresividad proposicional cuadricular.…”
Section: Algoritmos De Particiónunclassified
“…Afortunadamente, tales objetivos se pueden lograr mediante un proceso de extracción de conocimientos comúnmente conocido como KDD (del inglés, Knowledge Discovery Data) [4]. Entre las técnicas de extracción de la información más relevantes se encuentran el algoritmo KNN, perceptron, redes neuronales multicapa, clasificadores bayesianos y árboles de decisión [5].…”
Section: Minería De Datosunclassified