As a result of important advances over the last decade, block copolymer melts have become an excellent model system for studying fundamental phenomena associated with molecular self-assembly. During this time, good quantitative agreement has been achieved between theory and experiment in regards to equilibrium phase behaviour, and with it has emerged a thorough understanding in terms of simple intuitive explanations. The theoretical contributions to this effort are largely attributed to mean-field calculations on a standard Gaussian model. Here, we review this present understanding of block copolymer phase behaviour, the model and its underlying assumptions, the mean-field approximation and its limitations, and the attempts to incorporate fluctuation corrections. Rather than following the traditional rigorous derivations, we present slightly more intuitive and transparent ones in such a way to stress the close connection between the related calculations. In this way, we hope to provide a valuable introduction to block copolymer theory.