Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: This paper showed the synthetic capability of the indolo[2,3-b]quinoxaline nucleus to be provided as an excellent precursor for the synthesis of various heterocyclic compounds. These synthetic routes proceed via the formation of 3-(6H-indolo[2,3-b]quinoxalin-6-yl)propane hydrazide (2). The carbohydrazide 2 and its reactions with different reagents give five and six-membered rings, such as 1,3,4-thiadiazole, 1,3,4-oxadiazole, 1,2,4-triazole, and 1,2,4-triazine. Methods: All chemicals used in the current study were of analytical grade. Melting points were determined using an APP Digital ST 15 melting point apparatus and were uncorrected. FT-IR spectra were recorded on a Pye-Unicam SP3-100 and Shimadzu-408 spectrophotometers in KBr pellets and given in (cm-1) KBr. The NMR spectra were detected by a Bruker AV-400 spectrometer (400 MHz for 1H, 100 MHz for 13C and 40.55 MHz for 15N), Institute of Organic Chemistry, Karlsruhe, Germany. Chemical shifts were expressed as δ (ppm) with TMS as an internal reference. Mass spectrometry was provided on a Varian MAT 312 instrument in EI mode (70 eV). Results: The target compounds were obtained, and their structures were completely elucidated by various spectral and elemental analyses (Ft-IR, 1H-NMR, 13C-NMR, and mass spectrometry). Conclusion: The current work showed a view of the reactivity of the carbohydrazide group. The carbohydrazide 2 was obtained from the hydrazinolysis of carboethoxy compound 1 and exploited as a key intermediate to synthesize heterocyclic compounds with different rings.
Background: This paper showed the synthetic capability of the indolo[2,3-b]quinoxaline nucleus to be provided as an excellent precursor for the synthesis of various heterocyclic compounds. These synthetic routes proceed via the formation of 3-(6H-indolo[2,3-b]quinoxalin-6-yl)propane hydrazide (2). The carbohydrazide 2 and its reactions with different reagents give five and six-membered rings, such as 1,3,4-thiadiazole, 1,3,4-oxadiazole, 1,2,4-triazole, and 1,2,4-triazine. Methods: All chemicals used in the current study were of analytical grade. Melting points were determined using an APP Digital ST 15 melting point apparatus and were uncorrected. FT-IR spectra were recorded on a Pye-Unicam SP3-100 and Shimadzu-408 spectrophotometers in KBr pellets and given in (cm-1) KBr. The NMR spectra were detected by a Bruker AV-400 spectrometer (400 MHz for 1H, 100 MHz for 13C and 40.55 MHz for 15N), Institute of Organic Chemistry, Karlsruhe, Germany. Chemical shifts were expressed as δ (ppm) with TMS as an internal reference. Mass spectrometry was provided on a Varian MAT 312 instrument in EI mode (70 eV). Results: The target compounds were obtained, and their structures were completely elucidated by various spectral and elemental analyses (Ft-IR, 1H-NMR, 13C-NMR, and mass spectrometry). Conclusion: The current work showed a view of the reactivity of the carbohydrazide group. The carbohydrazide 2 was obtained from the hydrazinolysis of carboethoxy compound 1 and exploited as a key intermediate to synthesize heterocyclic compounds with different rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.