Experiments and computations are performed to model the chemical vapor deposition of iron (Fe) from iron pentacarbonyl (Fe(CO)5). The behavior of the deposition rate is investigated as a function of temperature, in the range 130–250 °C, and pressure in the range 10–40 Torr. Furthermore, the evolution of the surface roughness is correlated with the deposition temperature. By combining previously published mechanisms for the decomposition of Fe(CO)5, a predictive 3D macroscale model of the process is built. Additionally, a nanoscale and a multiscale framework are developed for linking the evolution of the surface of the film with the operating conditions at the reactor scale. The theoretical predictions from the coupled macro/nanoscale models are in very good agreement with experimental measurements indicating poisoning of the surface from carbon monoxide and decrease of the film roughness when temperature increases.