With the evolution of technology, many modern applications like habitat monitoring, environmental monitoring, disaster prediction and management, and telehealth care have been proposed on wireless sensor networks (WSNs) with Internet of Things (IoT) integration. However, the performance of these networks is restricted because of the various constraints imposed due to the participating sensor nodes, such as nonreplaceable limited power units, constrained computation, and limited storage. Power limitation is the most severe among these restrictions. Hence, the researchers have sought schemes enabling energy-efficient network operations as the most crucial issue. A metaheuristic clustering scheme is proposed here to address this problem, which employs the differential evolution (DE) technique as a tool. The proposed scheme achieves improved network performance via the formulation of loadbalanced clusters, resulting in a more scalable and adaptable network. The proposed scheme considers multiple parameters such as nodes' energy level, degree, proximity, and population for suitable network partitioning. Through various simulation results and experimentation, it establishes its efficacy over state-of-the-art schemes in respect of load-balanced cluster formation, improved network lifetime, network resource utilization, and network throughput. The proposed scheme ensures up to 57.69%, 33.16%, and 57.74% gains in network lifetime, energy utilization, and data packet delivery under varying network configurations. Besides providing the quantitative analysis, a detailed statistical analysis has also been performed that describes the acceptability of the proposed scheme under different network configurations.