Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.
S ea ice covers extensive regions of the Arctic and SouthernOceans, as well as some subpolar seas, and exhibits major annual, interannual, and long-term climate-related variability in age, thickness, and structure (1-3). Sea ice is not an inert physical barrier to air-ocean exchange (4), and both microbial activity and physico-chemical reactions within the ice contribute to regional-scale biogeochemical processes at the air-ocean surface interface (5).Sea ice provides a range of habitats for diverse biological assemblages that are characterized by high standing stocks of microalgae and bacteria (6). These microorganisms produce large quantities of dissolved organic carbon (DOC), often in the form of carbohydrate-rich extracellular polymeric substances (EPS) (7). Microbial EPS exist in a dynamic equilibrium from dissolved polysaccharides (dEPS <0.2 μm) to complex particulate EPS that can form gels on the millimeter to centimeter scale (8). Here we focus on the biologically relevant dissolved carbohydrates (dCHO) that constitute a substantial fraction of the DOC in sea ice (9-13) (Fig. 1). dCHO are concentrated from sea ice DOC by dialysis (>8 kDa), with subsequent treatment allowing the definition of four subcomponents of the total dCHO pool: (i) dissolved uronic acids (dUA), produced by ice diatoms and ice bacteria (14-16), that confer strong cross-linkages between polymer chains (8), forming low solubility EPS complexes w...