High-performance cyber-physical applications impose several requirements with respect to performance, functional correctness and non-functional aspects. Nowadays, the design of these systems usually follows a model-driven approach, where models generate executable applications, usually with an automated approach. As these applications might execute in different parallel environments, their behavior becomes very hard to predict, and making the verification of non-functional requirements complicated. In this regard, it is crucial to analyse and understand the impact that the mapping and scheduling of computation have on the real-time response of the applications. In fact, different strategies in these steps of the parallel orchestration may produce significantly different interference, leading to different timing behaviour.Tuning the application parameters and the system configuration proves to be one of the most fitting solutions. The design space can however be very cumbersome for a developer to test manually all combinations of application and system configurations. This paper presents a methodology and a toolset to profile, analyse, and configure the timing behaviour of highperformance cyber-physical applications and the target platforms. The methodology leverages on the possibility of generating a task dependency graph representing the parallel computation to evaluate, through measurements, different mapping configurations and select the one that minimizes response time.