Abstract. OpenMP* has recently gained attention in the embedded domain by virtue of the augmentations implemented in the last specification. Yet, the language has a minimal impact in the embedded real-time domain mostly due to the lack of reliability and resiliency mechanisms. As a result, functional safety properties cannot be guaranteed. This paper analyses in detail the latest specification to determine whether and how the compliant OpenMP implementations can guarantee functional safety. Given the conclusions drawn from the analysis, the paper describes a set of modifications to the specification, and a set of requirements for compiler and runtime systems to qualify for safety critical environments. Through the proposed solution, OpenMP can be used in critical real-time embedded systems without compromising functional safety.
The safety-critical real-time embedded domain increasingly demands the use of parallel architectures to fulfill performance requirements. Such architectures require the use of parallel programming models to exploit the underlying parallelism. This paper evaluates the applicability of using OpenMP, a widespread parallel programming model, with Ada, a language widely used in the safety-critical domain.Concretely, this paper shows that applying the OpenMP tasking model to exploit fine-grained parallelism within Ada tasks does not impact on programs safeness and correctness, which is vital in the environments where Ada is mostly used. Moreover, we compare the OpenMP tasking model with the proposal of Ada extensions to define parallel blocks, parallel loops and reductions. Overall, we conclude that the OpenMP tasking model can be safely used in such environments, being a promising approach to exploit fine-grain parallelism in Ada tasks, and we identify the issues which still need to be further researched. Abstract. The safety-critical real-time embedded domain increasingly demands the use of parallel architectures to fulfill performance requirements. Such architectures require the use of parallel programming models to exploit the underlying parallelism. This paper evaluates the applicability of using OpenMP, a widespread parallel programming model, with Ada, a language widely used in the safety-critical domain. Concretely, this paper shows that applying the OpenMP tasking model to exploit fine-grained parallelism within Ada tasks does not impact on programs safeness and correctness, which is vital in the environments where Ada is mostly used. Moreover, we compare the OpenMP tasking model with the proposal of Ada extensions to define parallel blocks, parallel loops and reductions. Overall, we conclude that the OpenMP tasking model can be safely used in such environments, being a promising approach to exploit fine-grain parallelism in Ada tasks, and we identify the issues which still need to be further researched.
Abstract. Different analysis and optimisations have been devised for OpenMP over the years. However, as OpenMP added asynchronous parallelism in the form of tasks several of them need to be revisited. One such analysis is auto-scoping, the process of automatically determine the data-sharing attributes of variables. Auto-scoping relieved the programmer of determining the data-sharing of variables used in worksharing or parallel regions. Based on the previous work for worksharing and parallel regions, we present an auto-scoping algorithm to work with OpenMP tasks. This is a much complex challenge due to the uncertainty of when a task will be executed, which makes harder to determine with what other parts of the program will be executed concurrently. We also present an implementation of the algorithm and results with a number of benchmarks showing that the algorithm is able to correctly scope a large percentage of the variables present in them.
OpenMP is increasingly being considered as a convenient parallel programming model to cope with the performance requirements of critical real-time systems. Recent works demonstrate that OpenMP enables to derive guarantees on the functional and timing behavior of the system, a fundamental requirement of such systems. These works, however, focus only on the exploitation of fine grain parallelism and do not take into account the peculiarities of critical real-time systems, commonly composed of a set of concurrent functionalities. OpenMP allows exploiting the parallelism exposed within real-time tasks and among them. This paper analyzes the challenges of combining the concurrency model of real-time tasks with the parallel model of OpenMP. We demonstrate that OpenMP is suitable to develop advanced critical real-time systems by virtue of few changes on the specification, which allow the scheduling behavior desired (regarding execution priorities, preemption, migration and allocation strategies) in such systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.