Conservation genetics studies of populations bottlenecks are commonly framed under the detrimental paradigm of inbreeding depression. This conceptual paradigm presupposes a direct and unambiguous relationship between population size, genetic diversity, fitness, and extinction. Here, I review a series of studies that emphasize the role of chance, selection, and history in determining the genetic consequences of population bottlenecks. The variable responses of bottlenecks to fitness, phenotypic variation, and heritable variation emphasize the necessity to explore the relationship between molecular genetic diversity, fitness, adaptive genetic diversity, and extinction beyond the detrimental paradigm of inbreeding depression. Implications for conservation and management are presented as guidelines and testable predictions regarding the potential effects of bottlenecks on population viability and extinction.