A unique pressure-induced Cu-N bond breaking/bond forming reaction is reported. The variation of pressure on a single crystal of a one-dimensional copper- (II)-containing coordination polymer (Cu L (1-methylpiperazine) ] , where H L is 1,1'-(1,3-phenylene)-bis(4,4-dimethylpentane-1,3-dione)), was monitored using single crystal X-ray diffraction with the aid of a diamond anvil cell. At a very low elevated pressure (≈0.05 GPa) a remarkable reversible phase change was observed. The phase change results in the depolymerization of the material through the cleavage and formation of axial Cu-N bonds as well as "ring flips" of individual axially coordinated 1-methylpiperazine ligands. Overall, the pressure-induced phase change is associated with a surprising (and non-intuitive) shift in structure-from a 1-dimensional coordination polymer to a discrete dinuclear complex.