Probabilistic shaping is, nowadays, a pragmatic and popular approach to improve the performance of coherent optical fiber communication systems. In the linear regime, the potential of probabilistic shaping in terms of shaping gain and rate granularity is well known, and its practical implementation has been mostly mastered. In the nonlinear regime, the advantages offered by probabilistic shaping remain not only valid, but might also increase thanks to the appealing opportunity to use the same technique to mitigate nonlinear effects and obtain an additional nonlinear shaping gain. Unfortunately, despite the recent research efforts, the optimization of conventional shaping techniques, such as probabilistic amplitude shaping (PAS), yields a relevant nonlinear shaping gain only in particular scenarios of limited practical interest, e.g., in the absence of carrier phase recovery. Recently, a more theoretical approach, referred to as sequence selection, has been proposed to understand the performance and limitation of nonlinear constellation shaping. Sequence selection shapes the distribution of the transmitted symbols by selecting or discarding the sequences generated by a certain source according to a metric that measures their quality. In this manuscript, after a brief review of conventional probabilistic shaping, we use sequence selection to investigate through simulations the potential, opportunities, and challenges offered by probabilistic shaping for nonlinear channels. First, we show that ideal sequence selection is able to provide up to 0.13 bit/s/Hz additional gain with respect to PAS with an optimized blocklength. However, this additional gain is obtained only if the selection metric accounts for the signs of the symbols, ruling out the possibility of using one of the simple recently proposed sign-independent metrics. We also show that, while the signs must be known to compute the selection metric, there is no need to shape them, since nearly the same gain can be obtained by properly selecting the amplitudes (with a sign-dependent metric) and leaving the signs uniform i.i.d. Furthermore, we show that the selection depends in a noncritical way on the symbol rate and link length: the sequences selected for a certain scenario still provide a relevant gain if the link length or baud rate are modified (within a reasonable range). Then, we analyze and compare several practical implementations of sequence selection by taking into account interaction with forward error correction (FEC), information loss due to selection, and complexity. Overall, we conclude that the single block and the multi block FEC-independent bit scrambling are the best options for the practical implementation of sequence selection, with a gain up to 0.08 bit/s/Hz. The main challenge and limitation to their practical implementation remains the evaluation of the metric, whose complexity is currently too high. Finally, we show that the nonlinear shaping gain provided by sequence selection persists when carrier phase recovery is included, in contr...