Many sectors nowadays require accurate and coherent predictions across their organization to effectively operate. Otherwise, decision-makers would be planning using disparate views of the future, resulting in inconsistent decisions across their sectors. To secure coherency across hierarchies, recent research has put forward hierarchical learning, a coherency-informed hierarchical regressor leveraging the power of machine learning thanks to a custom loss function founded on optimal reconciliation methods. While promising potentials were outlined, results exhibited discordant performances in which coherency information only improved hierarchical forecasts in one setting. This work proposes to tackle these obstacles by investigating custom neural network designs inspired by the topological structures of hierarchies. Results unveil that, in a data-limited setting, structural models with fewer connections perform overall best and demonstrate the value brought by coherency information in both accuracy and coherency forecasting performances, provided individual forecasts were generated within reasonable accuracy limits. Overall, this work expands and improves hierarchical learning methods thanks to a structurally-scaled learning mechanism extension coupled with tailored network designs, producing a resourceful, data-efficient, and information-rich learning process.