The physiochemical properties of the implant interface significantly influence cell growth, differentiation, cellular matrix deposition, and mineralisation, and eventually, determine the bone regeneration efficiency. Cells directly sense and respond to the physical, chemical, and mechanical cues of the implant surface, and it is increasingly recognized that surface topography can evoke specific cellular responses, conferring biological functions on substrate materials and regulating tissue regeneration. Current progress towards the fundamental understanding of the interplay between the cell and topographical surface has been made by combined advance in fabrication technologies and cell biology. Particularly, the precise fabrication and control of nano/microscale topographies can provide the fundamental knowledge of the mechanotransduction process that governs the cellular response as well as the knowledge of how the specific features drive cells towards a defined differentiation outcome. In this review, we first introduce common techniques and substrate materials for designing and fabricating micro/nano‐topographical surfaces for bone regeneration. We then illustrate the intrinsic relationship of topological cues, cellular signal transduction, and cell functions and fates in osteogenic differentiation. Finally, we discuss the challenges and the future of using topological cues as a cell therapy to direct bone tissue regeneration.