While prior reviews and research articles focused on the various synthetic routes and microstructural controls of 2D nanomaterials as well as their functional applications, this chapter discloses the anisotropic behaviors of 2D materials and puts emphasis on the mechanical anisotropy of three distinct 2D materials, namely graphene, MoS2 and Al alloy coating, representative of carbon, inorganic and metallic 2D crystalline materials. Except for the relatively low interlayer cohesive stress, the in-plane anisotropy of the former two materials classes is subjected primarily to the hexagonal structure of the unit cells of the graphene and MoS2. The anisotropy of metallic thin films with high-density grain boundaries with preferential directionality, rendered by the non-equilibrium synthetic methods, results from both the conventional Taylor factor and the directionality of the grain boundaries. Despite 2D materials’ wide spectrum of applications, such as electronics, energy devices, sensors, coating etc., the mechanical anisotropy could be critical for certain mechanical applications, such as friction, and provide instructions on the durability, reliability and property optimization in the various applications of different 2D materials.