The identification of small subpopulations of cancer stem cells (CSCs) from blood mononuclear cells in human acute myeloid leukemia (AML) in 1997 was the landmark observation for recognizing the potential role of CSCs in tumor aggressiveness. Two critical properties contribute to the functional role of CSCs in the establishment and recurrence of cancerous tumors: their self-renewal capacity and their potential to differentiate into unlimited heterogeneous populations of cancer cells. These findings suggest that CSCs may represent novel therapeutic targets for the treatment and/or prevention of tumor progression as they appear to be involved in cell migration, invasion, metastasis, and treatment resistance, all of which lead to poor clinical outcomes. The identification of CSC-specific markers, the isolation and characterization of CSCs from malignant tissues, and targeting strategies for the destruction of CSCs provides a novel opportunity for cancer research. Described in this overview is the potential implication of several common CSC markers in the identification of CSC subpopulation restricted to common malignant diseases e.g., leukemia, breast, prostate, pancreatic and lung cancers. The role of microRNAs (miRNAs) in the regulation of CSC function is also discussed, as are several methods commonly used in CSC research. The potential role of the anti-diabetic drug metformin that has been shown to have effects on CSCs, and known function as an anti-tumor agent, provides an example of this new class of chemotherapeutics.