CO 2 emissions. Hence, transportation dependent on electrical propulsion (electric vehicles) instead of internal combustion engines can greatly reduce the pollution caused by our transportation infrastructure. While rechargeable Li-ion batteries are the major power source for portable electronic devices such as smartphones and laptop computers, further improvements in their energy density is required in order to promote electrochemical propulsion devices that can compete with internal combustion engines. [1] The energy density of Li-ion batteries depends on the specific capacities and redox potentials of their electrode materials. Layered lithiated transition metal oxides such as LiCoO 2 , LiNi 1/2 Mn 1/2 O 2 , and LiNi 1/3 Mn 1/3 Co 1/3 O 2 ("NMC 111") were extensively studied as cathodes, which can exhibit specific capacities ≤160 mA h g −1 with an upper potential limit of 4.3 V versus Li. [2] The high cost, low thermal stability, and fast capacity fading at high current rates or during deep cycling of currently used LiCoO 2 necessitated the development of other layered cathodes, such as LiNi 1/2 Mn 1/2 O 2 , NMC 111, etc. The electrochemical performance of these layered metal oxides was recently reviewed by Yushin and coworkers. [3] Higher capacities can be extracted from layered metal oxide cathodes by cycling to upper potentials of about 4.5 V, however, driving these layered cathode materials to such high potentials enhances the structural instability and impedance growth. [4,5] Another important direction is the development of Ni-rich NCM cathode materials. As the content of Ni is higher, the specific capacity that can be extracted is higher as